Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts.

نویسندگان

  • Tilo Kunath
  • Danielle Arnaud
  • Gary D Uy
  • Ikuhiro Okamoto
  • Corinne Chureau
  • Yojiro Yamanaka
  • Edith Heard
  • Richard L Gardner
  • Philip Avner
  • Janet Rossant
چکیده

The extra-embryonic endoderm lineage plays a major role in the nutritive support of the embryo and is required for several inductive events, such as anterior patterning and blood island formation. Blastocyst-derived embryonic stem (ES) and trophoblast stem (TS) cell lines provide good models with which to study the development of the epiblast and trophoblast lineages, respectively. We describe the derivation and characterization of cell lines that are representative of the third lineage of the blastocyst -extra-embryonic endoderm. Extra-embryonic endoderm (XEN) cell lines can be reproducibly derived from mouse blastocysts and passaged without any evidence of senescence. XEN cells express markers typical of extra-embryonic endoderm derivatives, but not those of the epiblast or trophoblast. Chimeras generated by injection of XEN cells into blastocysts showed exclusive contribution to extra-embryonic endoderm cell types. We used female XEN cells to investigate the mechanism of X chromosome inactivation in this lineage. We observed paternally imprinted X-inactivation, consistent with observations in vivo. Based on gene expression analysis, chimera studies and imprinted X-inactivation, XEN cell lines are representative of extra-embryonic endoderm and provide a new cell culture model of an early mammalian lineage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choice of random rather than imprinted X inactivation in female embryonic stem cell-derived extra-embryonic cells.

In female mammals, one of two X chromosomes is epigenetically inactivated for gene dosage compensation, known as X inactivation (Xi). Inactivation occurs randomly in either the paternal or maternal X chromosome in all embryonic cell lineages, designated as random Xi. By contrast, in extra-embryonic cell lineages, which are segregated from somatic cell lineages in pre-implantation development, t...

متن کامل

Characterization of Histone Modifications Associated with Inactive X-Chromosome in Trophoblast Stem Cells, eXtra-Embryonic Endoderm Cells and in In Vitro Derived Undifferentiated and Differentiated Epiblast Like Stem Cells

In mouse, X-chromosome inactivation (XCI) can either be imprinted or random. Imprinted XCI (iXCI) is considered unstable and depending on continuous Xist expression, whereas random XCI (rXCI) is stably maintained even in the absence of Xist. Here we have systematically examined epigenetic modifications associated with the inactive X-chromosome (Xi) in Trophoblast Stem cells, eXtra-Embryonic End...

متن کامل

Effects of Mouse Strain on Establishment of Embryonic Stem Cell Lines

Purpose: Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts with self-renewal and pluripotency characteristics. These cells have potential for studies of in vitro differentiation, gene function, etc. This study was, therefore, initiated to establish new ES lines and evaluate the effects of strain on ES cell production. Materials and Methods: 3-5 day blastocysts were ...

متن کامل

Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report.

Chimaeric conceptuses have been produced by injection of 5 1/2-and 6 1/2-day extra-embryonic ectoderm and 5 1/2-day embryonic and extra-embryonic endoderm into 3 1/2-day mouse blastocysts. Extra-embryonic ectoderm cells contributed only to the ectoplacental cone and/or trophoblast giant cell fractions, reflecting the probable trophectoderm origin of these cells. Proximal (visceral) endoderm cel...

متن کامل

Assessing free radical damage.

Background: Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 7  شماره 

صفحات  -

تاریخ انتشار 2005